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Abstract. We introduce index systems, a tool for studying isolated
invariant sets of dynamical systems that are not necessarily hyperbolic.
The mapping of the index systems mimics the expansion and contraction
of hyperbolic maps on the tangent space, and they may be used like
Markov partitions to generate symbolic dynamics. Every continuous
dynamical system satisfying a weak form of expansiveness possesses an
index system. Because of their topological robustness, they can be used
to obtain rigorous results from computer approximations of a dynamical
system.

1. Introduction

Hyperbolicity is one of the most important ideas in dynamical systems.
Every hyperbolic diffeomorphism admits a Markov partition—a finite col-
lection of rectangles that stretch or shrink in different directions, and map
nicely onto each other. The interaction of rectangles under a single applica-
tion of the map is sufficient to generate symbolic dynamics, which in turn
gives global information about the dynamical system.

In this paper we introduce index systems, a topological generalization
of hyperbolicity and Markov partitions. Index systems are composed of
finitely many index pairs, a fundamental object from Conley index theory.
The mapping of the index pairs mimics the expansion and contraction of the
Markov rectangles, and they may be used to generate symbolic dynamics.

The benefit of this topological approach is that it applies in much more
general situations than do Markov partitions. Hyperbolicity is a strong con-
dition (requiring at least a manifold and a differentiable map) that can be
difficult to verify. However, index systems can be constructed on metric
spaces in which the map is not differentiable. In particular, every discrete
dynamical system that satisfies a weak form of expansiveness (one of the
properties of every hyperbolic system) is guaranteed to have a nontrivial
index system. Moreover, unlike Markov partitions, index systems are ro-
bust under slight perturbations of the map. This will enable us (in future
work) to obtain rigorous results about dynamical systems from computer
approximations. As we will see, however, the expense of this generality is
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that whereas a Markov partition produces a subshift of finite type, an index
system generates a cocyclic subshift.

The paper is organized as follows. In Section 2 we recall necessary in-
formation about expansiveness and the Conley index. We discuss index
systems and their properties in Section 3. We show how to use them to de-
tect orbits of the dynamical system in Section 4 and how they can be used
to generate symbolic dynamics in Section 5. In Section 6 we show that all
maps with a weak form of expansiveness have index systems. In Section 7
we give examples.

2. Background

Unless otherwise specified, throughout this paper we let every space X
be a compact metric space and every dynamical system f : X → X be a
continuous map. An orbit of f is a bi-infinite sequence (xi ∈ X : i ∈ Z)
with the property that f(xi) = xi+1 for all i ∈ Z.

2.1. Expansiveness. A homeomorphism f : X → X is expansive if there
exists ρ > 0 such that for any distinct points x, y ∈ X, there is an integer
n with d(fn(x), fn(y)) > ρ. In other words, if the orbits of two points stay
close together for all time, then they must be the same point. Expansiveness
is a strong form of sensitive dependence on initial conditions since any two
distinct points must eventually move apart in either forward or backward
time. In practical terms, this means that any small initial measurement
error will lead to large errors in predicting behavior. It is not difficult to
show that if S is a hyperbolic invariant set for a diffeomorphism f , then f
restricted to S is expansive ([15, 26]).

Although expansiveness is defined as a metric property, on compact spaces
it is independent of the metric (of those compatible with the topology), and
there is a very simple and useful topological characterization. Moreover,
the topological definition can be extended trivially to continuous maps. To
state it we need some preliminary definitions.

We begin with the definition of an isolated invariant set, a notion that
is also central to Conley index theory and will be discussed in more detail
in Section 2.2. A set S ⊂ X is an isolated invariant set for a continuous
map f : X → X provided there is a compact set I with S = Inv I ⊂ Int I
(where Inv I denotes the maximal invariant subset of I). The set I is called
an isolating neighborhood for S. Examples of isolated invariant sets include
hyperbolic periodic orbits, attractors, and the invariant Cantor set inside
the Smale horseshoe.

For any dynamical system f : X → X, let f ×f : X ×X → X ×X be the
map (f × f)(x1, x2) = (f(x1), f(x2)). Let 1X = {(x, x) ∈ X × X} denote
the diagonal of X × X.

Definition 1. A continuous map f : X → X is expansive if the diagonal
1X ⊂ X × X is an isolated invariant set with respect to f × f .
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Note that when f is a homeomorphism this definition of expansive is
equivalent to the metric definition ([1, Def. 11.4]).

We have defined expansiveness for a map f : X → X. If S is an isolated
invariant subset of X we say that f is expansive on S if f restricted to
S is expansive. Note that this is equivalent to the condition that the set
1S = {(x, x) : x ∈ S} ⊂ X × X is an isolated invariant set for f × f :
X × X → X × X ([1, Ex. 11.5]).

2.2. Conley index. The discrete Conley index is a powerful topological
tool for studying isolated invariant sets. Roughly speaking, the Conley index
assigns to each isolated invariant set for f a pointed topological space and
a base-point preserving map on it, fP , which is unique up to an equivalence
relation. By studying the simpler map fP we can draw conclusions about
the original map f . Our discussion of the discrete Conley index is based
on that in [11], where one can find more details and proofs of the theorems
below.

Ideally one would like to place an isolated invariant set, S, between levels
of a filtration. In other words, we would like sets N0 ⊂ N1, both of which
map into their interiors, such that S = Inv(N1\N0). In practice this may
not be possible. Instead we must settle for a topological pair that behaves
locally like a filtration.

Definition 2. Let S be an isolated invariant set and suppose L ⊂ N are
compact sets. The pair (N,L) is an index pair for S provided N and L are
each the closures of their interiors and

(1) cl(N\L) is an isolating neighborhood for S,
(2) L is a neighborhood of the exit set, N− = {x ∈ N : f(x) /∈ Int N},

in N , and
(3) f(L) ∩ cl(N\L) = ∅.

The definition of index pair given above was introduced in [11] (where
they were called filtration pairs). This definition is similar to those in [4, 10,
21, 25, 27]. We see examples of index pairs in Figure 1.

Given a neighborhood U of an isolated invariant set S there exists an
index pair P = (N,L) with N\L ⊂ U . Given such an index pair we form
the pointed space NL by collapsing L to a point, [L] (see Figure 2). Thus f
induces a continuous map fP : NL → NL. The base point [L] is an attracting
fixed point of fP . The choice of index pairs for S is not unique, and different
choices can lead to topologically different maps fP . However, the choice is
unique up to shift equivalence (we will use ∼= to denote shift equivalence).
The resulting equivalence class is called the homotopy Conley index. For a
definition of shift equivalence and a proof of the facts in this paragraph see
[11].

In practice, one may wish to compute the relative homology (or coho-
mology) of the pointed space and the induced map (fP )∗ : H∗(NL, [L]) →
H∗(NL, [L]). Again, this map is unique up to shift equivalence. We call
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Figure 1. Index pairs: (N,L) for a fixed point saddle,
(N ′, L′) for the horseshoe Cantor set, and their images under
f .

NL N ′
L′

[L]

[L′]

Figure 2. The pointed spaces NL and N ′
L′ obtained from

the filtration pairs for the saddle and the horseshoe.

this equivalence class the homology Conley index, Con∗(S). (Note: we may
apply the Leray functor to (fP )∗ to obtain an automorphism of a graded
group, which is an invariant for S (see [21]).)

For instance, the fixed point saddle in Figure 1 has Con∗(S) ∼= (Z, Id)
where the Z is in dimension 1. The invariant Cantor set in the horseshoe has
Con∗(S) ∼= 0 (from a homological perspective the two arms of the horseshoe
cancel one another). Note that that if Con∗(S) 6∼= 0, then S 6= ∅ (this is
called Ważewski’s theorem), but the horseshoe shows that the converse is
not true.

An important feature of the Conley index is that if I is an isolating
neighborhood for f , then I is also an isolating neighborhood for Inv(I, g) for
any g that is C0-close to f , and in this case Inv(I, f) and Inv(I, g) have the
same Conley index ([11]). This robustness allows one to compute the Conley
index from a suitable numerical approximation of the map ([16, 19, 22, 23]).

3. Index systems

For differentiable maps it is frequently useful to look at the behavior of
orbits on the manifold and also the behavior of the derivative on the tangent
space following these orbits. Indeed, this is precisely what one does with
hyperbolicity. As we see in this section, for an expansive map f : X → X
we may use f × f : X × X → X × X to obtain a nice analogue of the
differentiable situation. We will see that slices of a neighborhood N of the
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diagonal (that is, intersections of {x}×X with N) are the analogues of the
tangent spaces and it is from these slices that we build the index system.

Suppose I = (Ii : i ∈ Z) is a sequence of compact sets in X (in practice
{Ii : i ∈ Z} will be a finite set of sets). We say that an orbit (xi) follows I
if xi ∈ Ii for all i ∈ Z. We call such a sequence, I, an isolating neighborhood
chain if for any orbit (xi) that follows I, xi ∈ Int(Ii) for all i ∈ Z. For I an
isolating neighborhood chain, let Inv0(I) ⊂ Int(I0) denote the set of points
whose orbits follow I; that is,

Inv0(I) = {x ∈ I0 : there exists an orbit (xi), with x0 = x, that follows I}.

Note that Inv0(I) is not, in general, f -invariant.
An index system is a collection of compact pairs. Each is similar to an

index pair, but instead of necessarily mapping to itself under f , it maps to
one or more of the pairs in the index system (see Figure 3). More precisely,
we have the following definition.

(Nai
, Lai

)

(Nai+1
, Lai+1

)
(Nai+2

, Lai+2
)

Figure 3. (Nai
, Lai

) precedes (Nai+1
, Lai+1

) which precedes (Nai+2
, Lai+2

).

Definition 3. An index system is a finite collection of compact pairs, P =
{Pa = (Na, La) : a ∈ A}, such that

(1) for each a ∈ A, there exists at least one b ∈ A such that Pa precedes
Pb, that is, such that
(a) La is a neighborhood of the exit set, N−

ab = {x ∈ Na : f(x) 6∈
Int Nb}, in N , and

(b) f(La) ∩ cl(Nb\Lb) = ∅, and
(2) any sequence (Ii = cl(Nai

\Lai
) : Pai

precedes Pai+1
for all i ∈ Z) is

an isolating neighborhood chain.

For each a, we form the pointed space NaLa
by collapsing La to a point,

[La]. If Pa precedes Pb, then f induces a continuous map fa,b : NaLa
→ NbLb

.
We can think of an index system as a directed graph. Each pointed space

NaLa
is a vertex, with an edge from NaLa

to NbLb
if Pa precedes Pb. (The

induced maps fa,b are analogues of the induced maps on the tangent bundle
for differentiable systems.) We say that a finite or infinite sequence (ai) is
allowable if it corresponds to a path in the graph, that is, if Pai

precedes
Pai+1

for all i.
Given an index system P, we define its invariant set by Inv(P) =

⋃

Inv0((Ii =
cl(Nai

\Lai
))), where the union is over all allowable sequences (ai : i ∈ Z).



6 DAVID RICHESON AND JIM WISEMAN

Thus Inv(P) is the set of points on orbits following an allowable sequence of
pairs. Let P be an index system. Define Invm(P) to be the set of x such that
there exists an orbit segment (xi)

m
i=−m with x0 = x and xi ∈ cl(Nai

\Lai
) for

some finite allowable sequence (ai)
m
i=−m.

Lemma 4. Let P be an index system. Then Inv(P) =
⋂∞

m=0 Invm(P).

Proof. The proof is based on that of [11, Prop. 2.2], which is the same
result for index pairs instead of index systems. It is obvious that Inv(P) ⊂
⋂∞

m=0 Invm(P). To prove the opposite inclusion, let x be an element of
⋂∞

m=0 Invm(P); we must show that x ∈ Inv(P).

For an allowable sequence (a−1, a0) with x ∈ cl(Na0
\La0

), define X
(a−1,a0)
1 =

f−1(x) ∩ cl(Na−1
\La−1

). Then, for (a−k, . . . , a0) an allowable sequence

with x ∈ cl(Na0
\La0

), inductively define X
(a−k ,...,a0)
k = f−1(X

(a−k+1,...,a0)
k−1 ) ∩

cl(Na−k
\La−k

). Each X
(a−k ,...,a0)
k is compact and f(X

(a−k ,...,a0)
k ) ⊂ X

(a−k+1,...,a0)
k−1 .

Set Xk =
⋃

X
(a−k ,...,a0)
k , where the union is over all allowable sequences

(a−k, . . . , a0) with x ∈ cl(Na0
\La0

); then Xk is a non-empty, compact set
with f(Xk) ⊂ Xk−1.

Now define Yk =
⋂

n≥1 fn+1(Xn+k). As the intersection of a nested se-
quence of non-empty compact subsets of Xk, Yk is a compact, non-empty
subset of Xk, so f(Y1) = {x} and for k > 1,

f(Yk) =
⋂

n≥1

fn+1(Xn+k) =
⋂

n≥2

fn(Xn+k−1) = Yk−1.

Finally, define x−1 to be any point of Y1, and inductively define x−k to be
any point in Yk with f(x−k) = x−k+1. If we set xk = fk(x) for k ≥ 0, then
(xi)

∞
i=−∞ is an orbit following an allowable sequence, so x ∈ Inv(P).

�

The following result follows immediately from Lemma 4.

Proposition 5. If P is an index system, then Inv(P) is a compact invariant
set.

Definition 6. Let S ⊂ X be an isolated invariant set. An index system P
is an index system for S if Inv(P) = S.

In Section 6 we present situations in which we can guarantee the existence
of index systems, and we give a procedure for constructing them that could
be implemented on a computer.

4. Detecting Orbits

In this section we show how to prove the existence of an orbit following a
given allowable sequence of sets (cl(Nai

\Lai
)). If f had the shadowing prop-

erty and the sets cl(Nai
\Lai

) were small enough, then we could guarantee
the existence of an orbit that follows this sequence ([26, §9.3]). However,
the shadowing property is difficult to verify in practice. Instead, we use the
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Conley index to verify that there is an f -orbit that “shadows” the sequence
in the sense that each iterate is in the appropriate set cl(Nai

\Lai
).

An allowable sequence (ai) yields a directed system

· · · −→ H∗(Pai
)

fai,ai+1∗

−−−−−−→ H∗(Pai+1
)

fai+1,ai+2∗

−−−−−−−→ H∗(Pai+2
) −→ · · ·.

The sequence (Pai
) has a nonzero orbital Conley index if any finite compo-

sition fan−1,an∗ ◦ · · · ◦ fam+1,am+2∗ ◦ fam,am+1∗ is nonzero (note that if we take
coefficients in a field and H∗(Pa) is finitely generated for each a, then the
maps are simply matrices).

We have the following theorem, which is the orbital analogue of Ważewski’s
theorem.

Theorem 7. Let P be an index system for the isolated invariant set S,
and let (ai) be an allowable sequence. If (Pai

) has a nonzero orbital Conley
index, then there is an orbit in S following (cl(Nai

\Lai
)). If f is expansive

and the diameters of the sets cl(Na\La) are sufficiently small for all a, then
this orbit is unique.

Proof. If the set
⋂m

i=−m f−i(cl(Nai
\Lai

)) were empty, then the induced map
would send every point to the basepoint, and the corresponding map on
homology would be zero. Since (Pai

) has a nonzero orbital Conley index,
the set

⋂m
i=−m f−i(cl(Nai

\Lai
)) is nonempty for all m. The same argument

used to prove Lemma 4 then shows that there is an orbit in S following
(cl(Nai

\Lai
)).

Suppose f is expansive on S and (xi) and (yi) are two orbits following
(cl(Nai

\Lai
)). Because f is expansive, 1S is an isolated invariant set for f×f

with some isolating neighborhood I. Assuming the diameters of cl(Nai
\Lai

)
are small enough, that means that (f ×f)-orbit ((xi, yi)) remains in I for all
i. But this implies that for all i, (xi, yi) ∈ 1S , or equivalently xi = yi. �

5. Symbolic dynamics

Many authors have used the Conley index or related techniques (for ex-
ample, Easton’s windows ([9])) to detect symbolic dynamics; an incomplete
list of references is [3, 5, 6, 8, 9, 12–14, 20, 22, 28–34]. Most treatments resem-
ble index systems, except that all of the index pairs are pairwise disjoint.
This is an important difference—disjoint index pairs make the conclusions
stronger, but they are significantly less useful because they cover less of the
space. In [12], Gidea developed a notion similar to index systems, of an or-
bital Conley index for compact sets traveling within a prescribed sequence
of neighborhoods, which he applied to detect periodic orbits and symbolic
dynamics. An important difference is that index systems are used to study
invariant sets, while Gidea’s orbital Conley index applies to non-invariant
sets that travel along a bi-infinite sequence of boxes. In addition, there is
no result similar to Theorem 9 for constructing the neighborhood sequence
for Gidea’s orbital Conley index, and the method for detecting symbolic
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dynamics requires that the neighborhoods be pairwise disjoint. As we see
in this section, we can relax this requirement with index systems.

The mapping of rectangles in a Markov partition generates a directed
graph, and paths through this graph become the elements of a subshift of
finite type. The elements of this subshift can be paired uniquely with points
in the dynamical system. The situation for index systems is similar, but
more complicated. Intuitively, we would like allowable sequences from our
directed graph of pointed spaces to generate symbolic dynamics. However,
we must use the Conley index (as in Section 4) to determine when there is a
true orbit corresponding to this allowable sequence, and then we must show
that each point corresponds to only one symbol sequence.

In order to put this in proper context we must introduce the notion of
a cocyclic subshift, a generalization of sofic shifts and subshifts of finite
type. See [17] for more information about cocylic subshifts and [5, 30, 31] for
examples of cocyclic subshifts in other dynamical and Conley index contexts.

Definition 8. Let G be a directed graph with vertices {1, . . . , n} and
at most one edge from any vertex to any other. Assign to each vertex
i a vector space Vi and to the edge from i to j a linear transformation
Ti,j : Vi → Vj . The cocyclic subshift associated to G consists of all words
(. . . , ωi−1, ωi, ωi+1, . . .) such that

(1) there is an edge from vertex ωi to ωi+1 for all i, and
(2) any finite composition Ti+m−1,i+m ◦ · · · ◦ Ti,i+1 is nonzero,

together with the usual shift map.

An index system generates the cocyclic subshift corresponding to the
graph with vertex set A, vector spaces H∗(Pa), edges from a to b if Pa

precedes Pb, and linear transformations fa,b∗. In other words, we take the
homology of our directed graph of pointed spaces. At each vertex we place
the homology of the given pair, H∗(Pa) = H∗(NaLa

, [La]), and we label each
directed edge from H∗(Pa) to H∗(Pb) with the corresponding induced map
on homology fa,b∗. Then elements of the cocyclic subshift correspond to
allowable sequences with nonzero orbital Conley index.

A further complication is that in general we do not get a conjugacy (or
semiconjugacy) from f to the cocyclic subshift because the sets {cl(Na\La)}
are usually not pairwise disjoint. For example, say that the period-two word
(1, 2, 1, 2, . . . ) is in the cocyclic subshift, which implies that there is a point
x ∈ X such that x ∈ cl(N1\L1), f(x) ∈ cl(N2\L2), f2(x) ∈ cl(N1\L1), and
so on. But if the two sets are not disjoint, then x could be a fixed point.
The P-itinerary of a point is not necessarily unique.

One way around this issue is simply to remove overlapping index pairs.
That is, take a maximal subgraph of the cocyclic subshift graph consisting
of vertices for which all of the corresponding sets cl(Na\La) are pairwise
disjoint. Then, as desired, we will get a semi-conjugacy from an isolated
invariant set in X to the cocyclic subshift induced by the subgraph. The
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disadvantage of this approach is that we are losing information about f
when we throw away vertices.

Another approach is to look at powers fn. In this case, only some, not
all, of the index pairs must be disjoint in order to detect positive-entropy
symbolic dynamics. For example, let ω = (ω0, . . . , ωn) be a word in the
cocyclic subshift, and define Sω ⊂ X to be the subset Inv({x ∈ X : f i(x) ∈
cl(Nωi

), 0 ≤ i ≤ n}, fn+1). If, say, the sets cl(N1\L1) and cl(N3\L3) are
disjoint, then the sets S(1,1,1) and S(1,2,3) are disjoint (even if cl(N1\L1),
cl(N2\L2), and cl(N3\L3) are not pairwise disjoint), so we can define sym-
bolic dynamics and get a semiconjugacy for f3.

Using either method for a generic index system, we get only a semiconju-
gacy from the invariant set to the cocyclic subshift. Thus, while we can get
a lower bound for the topological entropy of f , we cannot conclude that a
periodic word for the subshift actually corresponds to a periodic point for f .
However, if f is expansive and the index pairs are sufficiently small, then by
the uniqueness of orbits guaranteed by Theorem 7, we do get a conjugacy.
Even in some cases when we do not have expansiveness (in particular, if
the homology is nontrivial on exactly one level), we can use a version of the
Lefschetz fixed point theorem ([28]) instead of Theorem 7 to detect periodic
points for f . For the sake of brevity, we omit the details.

There are further details on techniques for generating symbolic dynamics
from index systems in [24].

6. Existence of index systems

As we have said, hyperbolic diffeomorphisms admit Markov partitions. In
fact, homeomorphisms that are expansive and have the shadowing property
also admit Markov partitions ([2]), but expansivity alone is not sufficient.
Furthermore, even when they exist, Markov partitions can be difficult to
construct.

One of the benefits of index systems is that under certain general circum-
stances their existence is guaranteed. Moreover, the proof is constructive—it
requires only the ability to find a single index pair. There are computer al-
gorithms that will do that (see [7], for example).

It is immediate that every isolated invariant set S has at least a trivial
index system: the system consisting of the single pair (N,L), where (N,L)
is an index pair for S. In the case that f is expansive, we can do better.

Theorem 9. Let f be expansive on an isolated invariant set S. Then there
exists an index system P = {(Na, La)} for S of arbitrarily small diameter
(that is, the diameter of Na is arbitrarily small for all a).

Proof. The idea of the proof is simple. Recall from Section 2.1 that since
S is expansive, the set 1S = {(x, x) : x ∈ S} ⊂ X × X is an isolated
invariant set for f × f . Thus any neighborhood of 1S contains an index pair
(N,L) for 1S under f ×f . By taking cross-sections, we get pairs (Nx, Lx) =
(π2(({x}×X)∩N), π2(({x}×X)∩L)) of arbitrarily small diameter (where
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π2 : X × X → X is the projection onto the second coordinate). We would
like these pairs to make up the index system. However, an index system
must be finite, and in general this construction may give us infinitely many
pairs, one for each x ∈ S.

By essentially discretizing the space and using the robustness of the
Conley index we can modify the original index pair (N,L) to yield only
finitely many cross-sections. Let D be the metric on X × X given by
D((x, y), (x′, y′)) = max(d(x, x′), d(y, y′)). By the definition of index pair,
there exists an ε > 0 such that D(1S , L) > ε, D((f × f)(L), cl(N\L)) > ε,
and D(N−, cl(N\L)) > ε. Pick δ < ε/3 such that for any points (x, y) and
(x′, y′) within ε of N , if D((x, y), (x′, y′)) < δ, then D((f × f)(x, y), (f ×
f)(x′, y′)) < ε/3.

Let {Vi} be a finite collection of compact subsets of X of diameter less
than δ such that π1(N) ∪ π2(N) ⊂

⋃

i Int(Vi). This gives a product cover

of N , {Vij = Vi × Vj}. We now construct a new index pair for 1S , (Ñ , L̃),

by setting Ñ =
⋃

{ij:Vij∩N 6=∅} Vij and L̃ =
⋃

{ij:Vij∩L6=∅} Vij. (See Figure 4.)

The set of cross-sections of (Ñ , L̃) is finite, and it is straightforward to check
that it forms an index system for S. �

X

X

X

X

1S 1S

(Na, La)

x

Figure 4. The given index pair for 1S , a discretized index
pair nearby, and one of the finite number of slices.

Theorem 9 says that if f is expansive on an isolated invariant set S, then
it has an index system. Expansiveness is a strong condition that may be
difficult to verify in practice. It turns out that a condition weaker than
expansiveness guarantees the existence of index systems. In Theorem 9
we assumed that 1S ⊂ X × X was an isolated invariant set (i.e., that f
was expansive on S), but the technique for constructing the index system
requires only that 1S be contained in some isolated invariant set Λ. Then
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the slices of an index pair (N,L) for Λ give an index system for S. At one
extreme we have Λ = 1S (f is expansive), in which case we can find an
index system with index pairs arbitrarily small. At the other extreme, for
any isolated invariant set S we could take Λ = S × S; this would produce a
trivial index system consisting of one index pair. There may be times when
1S ( Λ ( S × S, and the resulting index system is useful.

If 1S is not an isolated invariant set, then we will not be able to make the
index pairs arbitrarily small, but that is not necessarily a big disadvantage.
On the one hand, the smaller the sets cl(Na\La), the stronger the conclusion
of Theorem 7, which is one reason the small diameters guaranteed by The-
orem 9 are important. Furthermore, the smaller the sets, the more disjoint
pairs we have, which, as we have seen, make it easier to detect symbolic
dynamics. On the other hand, small diameters can lead to a system with
many small, individually unimportant pieces. This would produce a large
graph, and thus a very complicated cocyclic subshift. So, in practice there
is a trade-off involved in the size of the sets of the index system.

7. Examples

Example 10. Let f : S1 → S1 be the doubling map on the circle, considered
as R/Z. The collection P = {(Ni, Li)}

9
i=0 is an index system, where Ni =

[ i−3−3ε
10 , i+3+3ε

10 ] and Li = [ i−3−3ε
10 , i−1−ε

10 ] ∪ [ i+1+ε
10 , i+3+3ε

10 ]. Pi precedes Pj

for j = 2i − 1, 2i, or 2i + 1 mod 10 (see Figure 5).

P0

P1

P2P3

P4

P5

P6

P7 P8

P9

(f(N0), f(L0))

(N0, L0)

(N1, L1)

(N9, L9)

0

1
10

1
5

3
10

2
5

1
2

3
5

7
10

4
5

9
10

Figure 5. An example showing that P0 precedes P9, P0,
and P1, and the directed graph for this index system.

Each pointed space NiLi
is homeomorphic to a circle. So, for every i, the

only nonzero homology is H1(Pi) = Z, and the induced maps are fi,j∗ = 1 if
Pi precedes Pj, and fi,j∗ = 0 otherwise. Thus any concatenation of the maps
f(1,1,1)∗ = f1,1∗◦f1,1∗ ◦f1,1∗ and f(1,3,5)∗ = f5,1∗◦f3,5∗◦f1,3∗ is nonzero. Since
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the sets cl((N1\L1)) and cl((N5\L5)) are disjoint, so are the sets S(1,1,1) and

S(1,3,5), and thus we see that the map f3 : S(1,1,1) ∪S(1,3,5) → S(1,1,1) ∪S1,3,5

factors onto the full shift on two symbols.

Example 11. Let f : R → R be the tent map given by

f(x) =

{

3x, if x ≤ 1/2,

3 − 3x, if x ≥ 1/2.

The map f × f has an index pair shown in Figure 6.

1
3

1
3

2
3

2
3 1

1

(N,L)

Figure 6. An index pair for f × f , where f is the tent map.

Taking slices we obtain the index system P = {(Ni, Li)}
4
i=1 for f (as

shown in Figure 7), where

N1 = N2 = [0 − 4ε, 1
3 + 4ε]

L1 = [0 − 4ε, 0 − ε] ∪ [19 + ε, 1
3 + 4ε]

L2 = [0 − 4ε, 2
9 − ε] ∪ [13 + ε, 1

3 + 4ε]
N3 = N4 = [23 − 4ε, 1 + 4ε]
L3 = [23 − 4ε, 2

3 − ε] ∪ [79 + ε, 1 + 4ε]
L4 = [23 − 4ε, 8

9 − ε] ∪ [1 + ε, 1 + 4ε].

Again, each pointed space NiLi
is homeomorphic to a circle. P1 and P4

precede P1 and P2, while P2 and P3 precede P3 and P4. In homology, in
dimension one, the induced maps are f1,1∗ = f1,2∗ = f2,3∗ = f2,4∗ = 1
and f3,3∗ = f3,4∗ = f4,1∗ = f4,2∗ = −1. Thus the tent map restricted to
Inv[0− ε, 1 + ε] factors onto the shift given by the graph in Figure 7, which
is conjugate to the full shift on two symbols ([18, §2.4]).

Example 12. Let f be the tent map from Example 11. The pair (N0, L0) =
([−4ε, 1+4ε], [−4ε,−ε]∪[13 +ε, 2

3−ε]∪[1+ε, 1+4ε]) is an index pair, and thus
also a (trivial) index system. The only nonzero homology is H1(N0, L0) =
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(N1, L1)

(N2, L2)

(N3, L3)

(N4, L4)

P1

P2P3

P4

1
3

2
3 1

1

1
2

3
2

1

1

1

1

−1

−1

−1

−1

Figure 7. An index system for the tent map, and the asso-
ciated directed graph.

Z2, and the induced map is given by f00∗ =

(

1 −1
1 −1

)

. Since (f00∗)
2 is the

zero matrix, the cocyclic subshift is empty. Thus this index system fails to
detect any invariant set.
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