1. (a) Show that $\langle(a, b),(c, d)\rangle=a c+\frac{1}{2}(a d+b c)+b d$ is an inner product on \mathbb{R}^{2}.
(b) Show that $\mathcal{B}=\left\{\mathbf{x}_{1}=(1,0), \mathbf{x}_{2}=(1,-2)\right\}$ is an orthogonal basis for \mathbb{R}^{2} with this inner product.
(c) Use this inner product to find the coordinates of the vector $(2,2)$ with respect to the basis \mathcal{B}. (You can probably do it just by looking at it, but humor me and use the inner product.)
2. Let \mathbb{P}_{2} be the vector space of all real polynomials of degree less than or equal to two. For p and q in \mathbb{P}_{2}, define

$$
\langle p, q\rangle:=p(0) q(0)+p(1) q(1)+p(5) q(5)
$$

Show that this defines an inner product on \mathbb{P}_{2}. What is the "length" of the polynomial $2 x^{2}+x$ with this inner product?

