Due in my office 24 hours after you download it, and by the beginning of class on Thursday, April 15 , at the latest. You may use only your text, notes, and old homework (in particular, no other books, calculators, or Mathematica). You may not talk to anyone about it. I will not answer any questions other than requests for clarification. Make sure that your answers are clear and legible.

1. Let $f(x)$ be a function defined on the interval $[0, \pi]$ such that $\int_{0}^{\pi}|f(x)|^{2} d x=7$. Let $\sum_{n=1}^{\infty} A_{n} \sin n x$ be its Fourier sine series. Show that $\lim _{n \rightarrow \infty} A_{n}=0$.
2. The electric potential $v(x, y)$ in the space $0 \leq x \leq 1, y \geq 0$, satisfies the differential equation $\Delta v=0$. Find the formula for $v$ if the planes $x=0$ and $x=1$ are kept at zero potential and the plane $y=0$ at the potential $f(x)$, if $v$ is to be bounded as $y$ goes to infinity.
3. A function $T(r, \theta)$ satisfying $\Delta T=0$ is bounded within the circle $r=4$ and has values

$$
T(4, \theta)=\sin \theta-3 \cos \theta+5 \sin 4 \theta
$$

Find $T$.
4. Let $\phi(x)=2-\frac{x}{5}$ for $0 \leq x \leq 10$, and let $\hat{\phi}(x)$ be its Fourier sine series on the interval $[0,10]$.
(a) Does $\hat{\phi}$ converge to $\phi$ uniformly on $(0,10)$ ? Pointwise? In $L^{2}$ ?
(b) For each $x(0 \leq x \leq 10)$, what is the sum of the series $\hat{\phi}(x)$ ?
5. Consider the problem of heat conduction in a uniform rectangular plate with no internal source, perfect lateral insulation, a prescribed temperature of $0^{\circ}$ on the sides $x=0$ and $x=L$, and perfect insulation on the sides $y=0$ and $y=H$. This problem is modeled mathematically as $u_{t}=k\left(u_{x x}+u_{y y}\right)$, subject to the boundary conditions

$$
u(0, y, t)=u(L, y, t)=u_{y}(x, 0, t)=u_{y}(x, H, t)=0
$$

and the initial condition $u(x, y, 0)=f(x, y)$. Find a formula for the general solution. (Be sure to explain how to find any constants that may appear in your solution.)
6. Suppose that $u(x, y)$ is harmonic on the unit disk $x^{2}+y^{2}<1$, and also satisfies the boundary conditions $u(x, y)=10$ on the part of the boundary of the disk that lies in the first quadrant (i.e., in polar coordinates, the set $r=1,0 \leq \theta \leq \pi / 2$ ), and $u(x, y)=0$ on the rest of the boundary of the disk (i.e., $r=1, \pi / 2<\theta<2 \pi)$. What is $u(0,0)$ ?
7. Give an example of a bounded set $D$ in the plane and a function $u(x, y)$ that is harmonic in the interior of $D$ and continuous on $\bar{D}=D \cup($ bdy $D)$, such that the maximum value of $u$ is attained in the interior of $D$, but $u$ is not a constant function. Why doesn't your example violate the maximum principle?

