Math 6D Homework \#4
Due in class Friday, Dec. 5.

1. The dynamical system $F(x)=-2 x$ clearly has 0 as a fixed point and no other periodic points. But here is a "proof" that it has a period-two point. What is the flaw in the argument?

Proof: Define the intervals $L=[-1,0]$ and $R=[0,1]$. The transition diagram is then:

Since $L R L$ is a path, our theorem tells us that there's a fixed point x_{0} for F^{2} in the interval L whose itinerary is $L R L R L R \ldots$ Therefore x_{0} has period two.
2. Let $G:[0,1] \rightarrow[0,1]$ be our old friend the doubling map,

$$
G(x)= \begin{cases}2 x & \text { if } 0 \leq x<1 / 2 \\ 2 x-1 & \text { if } 1 / 2 \leq x \leq 1\end{cases}
$$

and $T:[0,1] \rightarrow[0,1]$ our older friend the tent map,

$$
T(x)= \begin{cases}2 x & \text { if } 0 \leq x \leq 1 / 2 \\ 2-2 x & \text { if } 1 / 2 \leq x \leq 1\end{cases}
$$

(a) Establish sensitive dependence for G and T. Show that each point has neighbors arbitrarily nearby that eventually map at least $1 / 2$ units apart.
(b) In fact, the doubling map G has a stronger property: Any two points x and y eventually map at least $1 / 2$ unit apart (i.e., given $x \neq y$, there's a nonnegative integer n such that $\left.\operatorname{dist}\left(f^{n}(x), f^{n}(y)\right) \geq 1 / 2\right)$. A map with this property is called expansive. Show that the tent map T is not expansive.
(c) Are G and T chaotic?
3. Let $F:[0,1] \rightarrow[0,1]$ be the logistic map defined by $F(x)=4 x(1-x)$. Use an appropriate transition diagram to help show that F has a period-three point. What does Sharkovskii's theorem tell us about the periodic points of F ?
4. (a) Can a continuous function on \mathbb{R} have a periodic point of period 48 but not one of period 56 ? Explain.
(b) Can a continuous function on \mathbb{R} have a periodic point of period 176 but not one of period 96 ? Explain.
5. Show that the union of two countable sets is countable.
6. Show that the middle-third Cantor set is uncountable. (Hint: ternary expansion.)
7. Consider the middle-half Cantor set $K(4)$ formed by deleting the middle half of each subinterval instead of the middle third.
(a) What is the box-counting dimension of $K(4)$?
(b) Consider the parametrized tent map T_{a} defined by

$$
T_{a}(x)= \begin{cases}a x & \text { if } x \leq 1 / 2 \\ a-a x & \text { if } 1 / 2 \leq x\end{cases}
$$

Let S_{a} be the set of points in $[0,1]$ that T_{a} never maps outside of $[0,1]$. For what value of a is $S_{a}=K(4)$? (Recall that S_{3} equals the usual middle-third Cantor set.)

