Math 6D Homework \#3
Due in class Friday, Nov. 21.

1. Let $f(x)$ be a differentiable function, and let $N(x)$ be its Newton function.
(a) Calculate $N^{\prime}(x)$.
(b) Show that every point x_{0} such that $f\left(x_{0}\right)=0$ and $f^{\prime}\left(x_{0}\right) \neq 0$ is an attracting fixed point for $N(x)$. What does this say about how well Newton's method works?
(c) Recall from your exam that the Babylonian function $B(x)$ for finding the square root of a positive number a is $B(x)=\frac{x+\frac{a}{x}}{2}$. Show that $B(x)$ is the same as the Newton function for $f(x)=x^{2}-a$.
2. Recall from the practice midterm the doubling map $G:[0,1] \rightarrow[0,1]$ defined by

$$
G(x)= \begin{cases}2 x & \text { if } 0 \leq x<1 / 2 \\ 2 x-1 & \text { if } 1 / 2 \leq x \leq 1\end{cases}
$$

(We can also define G as $G(x)=2 x \bmod 1$.) Let L denote the subinterval $[0,1 / 2]$ and R the subinterval $[1 / 2,1]$.
(a) Calculate and sketch the intervals $L L, L R, R L, R R$ and $L L L, L L R, L R L, L R R, R L L, R L R, R R L, R R R$. What is the size of an interval whose name has k letters?
(b) Draw the transition graph for G.
3. Recall that the tent map $T:[0,1] \rightarrow[0,1]$ is defined by

$$
T(x)= \begin{cases}2 x & \text { if } 0 \leq x \leq 1 / 2 \\ 2-2 x & \text { if } 1 / 2 \leq x \leq 1\end{cases}
$$

Repeat parts (a) and (b) of \#2 for T.
4. Define a function $H:[0,1] \rightarrow[0,1]$ by setting

$$
H(x)= \begin{cases}-x+1 / 3 & \text { if } 0 \leq x \leq 1 / 3 \\ 3 x-1 & \text { if } 1 / 3 \leq x \leq 2 / 3 \\ -2 x+7 / 3 & \text { if } 2 / 3 \leq x \leq 1\end{cases}
$$

Let L denote the subinterval $[0,1 / 3], M$ the subinterval $[1 / 3,2 / 3]$, and R the subinterval $[2 / 3,1]$.
(a) Calculate and sketch the intervals $L L, L M, L R, M L, M M, M R, R L, R M, R R$. What can you say about the size of an interval whose name has k letters in it? (This is more complicated than it was in \#2 and \#3.)
(b) Draw the transition graph for H.

