1. (BABYLONIAN SQUARE ROOT METHOD) Here's a way, discovered by the ancient Babylonians, to approximate the square root of a positive number a. Start with an initial guess x_0 . It could be that our guess is too big, i.e., $x_0 > \sqrt{a}$, and then we'll have $\frac{a}{x_0} < \sqrt{a}$, i.e., $\frac{a}{x_0}$ will be too small. On the other hand, if our guess x_0 is too small, then $\frac{a}{x_0}$ will be too big. Either way, if we average x_0 and $\frac{a}{x_0}$ (one of which is too big and one of which is too small), we should get a better guess, x_1 . We can repeat this process over and over, getting (we hope) better and better estimates.

In other words, our Babylonian function $B_a(x)$ for finding the square root of a is

$$B_a(x) = \frac{x + \frac{a}{x}}{2}.$$

(If x is our current guess, then $B_a(x)$ is our next guess.)

Show that \sqrt{a} is an attracting fixed point for B_a . What does this say about how well the method will work?

First, show it's fixed:
$$B_a(\overline{Va}) = \overline{Va} + \overline{Va} = \overline{Va} + \overline{Va} = \overline{dVa} - \overline{Va}$$

$$B_{a}'(x) = \frac{1 - \frac{q}{x^{2}}}{2}$$
, so $B_{a}'(\sqrt{u_{a}}) = \frac{1 - \frac{q}{(\sqrt{u_{a}})^{2}}}{2} = \frac{1 - \frac{q}{a}}{2}$

$$= \frac{1 - 1}{2}$$

Mis means that it your first guess is derent (close enough to 0=), than see method will work, and successive guesses will get better & better.

2. Consider the trough map $T:[0,1] \to [0,1]$ defined by

$$T(x) = \begin{cases} 1 - 2x & \text{if } 0 \le x \le 1/2, \\ 2x - 1 & \text{if } 1/2 \le x \le 1. \end{cases}$$

- (a) Find the first five terms on the orbit of $\frac{1}{11}$.
- (b) Draw the graphs of T and T^2 .
- (c) Find and classify the fixed points and period-two points of T.

4)
$$F(f) = 1 - \frac{1}{11} = \frac{11}{11}$$
; $F(f) = \frac{18}{11} - 1 = \frac{7}{11}$; $F(f) = \frac{14}{11} - 1 = \frac{3}{11}$; $F(f) = \frac{14}{11} - 1 = \frac{3}{11}$; $F(f) = \frac{1}{11} - 1 = \frac{3}{11}$; $F(f) = \frac{1}{11} - 1 = \frac{3}{11}$; $F(f) = \frac{1}{11} - 1 = \frac{3}{11}$; $F(f) = \frac{3}{11} - 1 = \frac{3}{11}$; $F(f) = \frac{1}{11} - 1 = \frac{3}{11}$; $F(f) = \frac{1}{11} - 1 = \frac{3}{11}$; $F(f) = \frac{3}{11} - 1 = \frac{3}{11}$

b) 1

c) Fixed 1ts - use the sright

Period-tro-ux Regraph

1/3 8 | 1 as 6 7 8 1/3 8 | 1 as 6 1/3 1/3 8 | 1 as 1/3

So the 2-cycle is $\left(\frac{1}{5}, \frac{3}{5}\right)$.

3. (a) Let X be the space of all infinitely differentiable functions from \mathbb{R} to \mathbb{R} . Then the map $D: X \to X$ that sends each function to its derivative is a dynamical system on X. (That is, if f(x) is an element of X, then D(f(x)) = f'(x).)

What are the fixed points of D?

$$Fin(D) = all fins f with $f(x) = f'(x)$.
Solns. are $\{Ce^{\frac{1}{2}}\}$, where C is any number.$$

(b) Now let Y be the subspace of X consisting of all polynomial functions, and let $D_Y: Y \to Y$ be the map that sends each polynomial to its derivative. (We call D_Y the restriction of D to Y.)

What are the possible long-term behaviors of points in Y? (Remember, a point in Y is a polynomial.)

Well,
$$D(ax+b)=a$$
, so $D^{3}(ax+b)=D(a)=0$.
$D^{3}(ax^{3}+5x+c)=0$, etc.
In general, $D^{n+1}(n^{m}degree pdynomial)=0$.
So every pt. in Y & is eventually fixed at O .

4. Define attracting fixed point.

No is an attacky fixed pt. for
$$F$$
 if none is a nShd.

No of Xo such met $F^n(x) \longrightarrow X_0$ for every x in N_E .

(EXTRA CREDIT) Let $F: X \to X$ be a discrete dynamical system on some space X. Is it possible for F to have exactly four fixed points and F^3 to have exactly nine fixed points? If so, give an example of such an F and X. If not, explain why.

Not possible. Perg
$$(F) = Fix(F^3) - Fix(F)$$
, so there would be $9-4 = 5$ period-3 pts. But period-3 points come in sets (3-cycles) of 3, so they their number much be a multiple of 3.