1. Let $F(x)=x^{2}+x$. Find and classify the fixed points. What are the possible long-term behaviors of points under F ?
2. Find and classify the fixed points of the following functions.
(a) $F(x)=1 / x^{2}$.
(b) $F(x)=1-x^{2}$.
(c) $F(x)=x^{2}-1$.
3. (a) Let $F(x)=-x^{3}$. Find and classify the fixed points, the period-two points, and the period-three points.
(b) Same question, with $F(x)=\left|\frac{1}{2} x\right|+\frac{1}{2}$.
4. Let $f(x)=\sqrt[3]{x}$. What are the roots? What happens if you use Newton's method with initial guess $x_{0}=1$?
5. Is it possible for a discrete dynamical system F to have exactly three points of (least) period two?
6. (a) Let $G(x)=\sin x$. Clearly 0 is a fixed point for G. Is it attracting, repelling, or neither?
(b) For what values of the parameter c will the point 0 be an attracting fixed point for the function $G_{c}(x)=c \sin x ?$
7. Let $G:[0,1] \rightarrow[0,1]$ be the doubling map defined by

$$
G(x)= \begin{cases}2 x & \text { if } 0 \leq x<1 / 2 \\ 2 x-1 & \text { if } 1 / 2 \leq x \leq 1\end{cases}
$$

(a) Draw the graphs of G, G^{2}, and G^{k}.
(b) Find and classify the fixed points and period-two points of G.
(c) What is the orbit of the point $1 / 10$?
(d) (HARDER) Show that x is eventually periodic or eventually fixed if and only if x is rational (i.e., $x=p / q$, where p and q are integers).
(e) Aside: G is clearly not continuous as a function from the interval $[0,1]$ to itself. However, if we glue together the points 0 and 1 , we get a circle, and G is continuous as a function from this circle to itself. This is the same thing as saying that $G(x)=2 x \bmod 1$ (i.e., $G(x)$ is the fractional part of $2 x$), if that means anything to you. Anyway, you don't need to know any of this for your exam.

