Math 6D Practice Final

1. Is $1 / 30$ in the middle-thirds Cantor set K ? (Hint: Remember that K is the set of all points that stay in the interval $[0,1]$ under all iterates of the slope- 3 tent map.)
2. Show that any subset of a countable set is itself countable.
3. Compute the box-counting dimension of the Sierpinski carpet. (The Sierpinski carpet, named after Waclaw Sierpinski, is a fractal derived from a square by cutting it into 9 equal squares with a 3 -by- 3 grid, removing the central piece and then applying the same procedure ad infinitum to the remaining 8 squares. See the figure below.)

Figure 1. The Sierpinski carpet
4. Show that the map $G:[0,1] \rightarrow[0,1]$ given by $G(x)=2.5 x(1-x)$ is not chaotic.
5. Assume that $a<b<c<d$ are points on the real line, and that F is a continuous map satisfying $F(a)=b, F(b)=d, F(c)=a$, and $F(d)=c$. For simplicity, assume that F is monotonic (increasing or decreasing) except possibly at the four points mentioned.
(a) Sketch the graph of F.
(b) Draw the transition diagram for F.
(c) What periods must exist? (Note: You don't need to memorize the Sharkovskii ordering. I'll give it to you on the exam if you need it.)
6. The dyadic rationals are the real numbers of the form $\frac{m}{2^{n}}$, where m and n are integers. Are the dyadic rationals dense in the real line \mathbb{R} ?
7. Explain what it means for a point to be sensitive.
8. Determine whether the following points are in the Mandelbrot set.
(a) $c=1 / 2$
(b) $c=i$

