Math 6B(1) Practice Midterm (not to be turned in)

1. Determine if the following series converge or diverge. Be sure to give reasons!
(a) $\sum_{n=1}^{\infty} \frac{2 n^{4}-6 n^{3}+13 n}{n^{5}+n^{2}+4}$
(b) $\sum_{n=1}^{\infty} \frac{1}{3^{n-1}+1}$
(c) $\sum_{n=2}^{\infty} \frac{(n!)(n!)}{(2 n)!}$
(d) $\sum_{n=1}^{\infty}\left(1+\frac{2}{n}\right)^{n}$
(e) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{2^{n}}$
(f) $\sum_{n=1}^{\infty} a_{n}$, if the nth partial sum of this series is given by $s_{n}=\frac{n-1}{2 n+1}$.
(g) $\sum_{n=1}^{\infty} \frac{n+1}{n} a_{n}$, if you know that $\sum_{n=1}^{\infty} a_{n}$ is a positive series that converges.
2. Find positive numbers A and B such that

$$
0<A \leq \sum_{n=0}^{\infty} \frac{1}{5^{n}+n^{3}} \leq B
$$

3. Suppose that at the beginning of each hour, a patient is given an injection of a 200 mg dose of antibiotics. It is known that after one hours, 43% of this antibiotic leaves one's system. So, the total amount of the drug in the patient after one hour is $300+300(.57) \mathrm{mg}$.
(a) How many mg of the drug are in the body after 24 hours?
(b) It turns out that 700 mg is a lethal dose of this antibiotic. Will the patient ever have this much of the drug in his/her system?
4. For each part, first determine whether or not such a series exists. If one does exist, give an example. If one does not exist, explain why not.
(a) A geometric series that converges to 2.
(b) A divergent series whose terms go to 0 .
(c) A convergent series whose terms do not go to 0 .
(d) A convergent series whose terms go to 0 .
(e) A series that converges, but not absolutely.
5. Let $z=-3+2 i$. Find $|z|, z^{2}$, and $1 / z$.
6. Handout, \# 4.2.2(b,c), p. 56.
7. Handout, \# 4.3.1, p. 59.
8. Find the third-degree Taylor polynomial at the point $a=1$ for the function $f(x)=\sqrt{x}$.
9. The present value, $\$ P$, of a future payment, $\$ B$, is the amount that would have to be deposited in a bank account today to produce exactly $\$ B$ in the account at the relevant time in the future. With an interest rate of r, compounded annually, and a time period of t years, a deposit of $\$ P$ grows to a future balance of $\$ B$, where

$$
B=P(1+r)^{t} \text {, or equivalently, } P=\frac{B}{(1+r)^{t}}
$$

(So if my uncle promises to give me $\$ 1000$ in two years, and the interest rate is 5%, that's worth $\frac{\$ 1000}{(1.05)^{2}}=\$ 907.03$ to me now, because if I deposited $\$ 907.03$ today, I'd have $\$ 1000$ in two years.)

One way of valuing a company is to calculate the present value of all its future earnings. Suppose a farm expects to sell $\$ 1000$ worth of Christmas trees once a year forever, with the first sale in the immediate future. What is the present value of this Christmas tree business? Assume that the interest rate is 6% per year, compounded annually.

