Name: \qquad

FIRST MIDTERM

This exam is 7 pages long; check that you have all the pages. Show your work. Correct answers with no justification may receive little or no credit. No calculators, notes, or books are allowed. No uncalled-for simplification is required. Use the backs of pages if you run out of space, and make sure that I can find your answers.

PROBLEM	POINTS	SCORE
1	20	
2	15	
3	10	
4	20	
5	10	
6	15	
7	10	
Extra credit	2	
TOTAL	100	

(1) (20 pts) Solve the following differential equations. (Give the general solution if no initial condition is specified.)
(a) $t^{5} y^{\prime}+y^{5}=0$
(b) $e^{2 y}-y \cos (t y)+\left(2 t e^{2 y}-t \cos (t y)+2 y\right) y^{\prime}=0$
(c) $\frac{d y}{d x}+2 x y=x, y(0)=-3$
(2) (15 pts) Find the general solution to the ODE $y^{\prime \prime}-2 y^{\prime}+y=e^{-t}$.
(3) (10 pts) Consider the initial value problem $y^{\prime \prime}-3 y^{\prime}+2 y=0, y(0)=y_{0}, y^{\prime}(0)=y_{0}^{\prime}$. For what initial conditions (i.e., what values of y_{0} and y_{0}^{\prime}) will the solution tend to 0 as $t \rightarrow \infty$?
(4) (20 pts) Newton's law of cooling states that the rate at which the temperature $T(t)$ changes in a cooling body is proportional to the difference between the temperature in the body and the constant temperature T_{m} of the surrounding medium. That is, $\frac{d T}{d t}=k\left(T-T_{m}\right)$. Yesterday, when I took my delicious cake out of the oven, I measured its temperature to be $300^{\circ} \mathrm{F}$. Three minutes later its temperature was $200^{\circ} \mathrm{F}$. How long will it take to cool off to $80^{\circ} \mathrm{F}$ if the room temperature is a balmy $70^{\circ} \mathrm{F}$?
(5) (10 pts) Discuss the differences between linear homogeneous and linear inhomogeneous ODEs.
(6) (15 pts) Find the equilibria for the ODE $y^{\prime}=-y^{2}-y$. Are they stable, unstable, or semistable? What is the long-term behavior of the solutions?
(7) (10 pts) The figure below shows the vector field $\frac{d}{d t}\left(\left[\begin{array}{c}y \\ y^{\prime}\end{array}\right]\right)$ associated to a differential equation $y^{\prime \prime}=F\left(y, y^{\prime}\right)$, along with some solution curves. Discuss the long-term behavior of solutions to the differential equation.

EXTRA CREDIT (2 points) Would you vote for Senator Haddock? Why or why not?

