Math 16H
Due in class Friday, 10/22.
(Remember, there's a definition of fields in the footnote on page 347 of Bretscher.)

1. Do the following problems from Bretscher: 7.5 (p. 350), \#13-17. Optional: 7.5.37, 3.1.53, 3.1.54.
2. Does the set of all polynomials with integer coefficients form a field? What if the coefficients are allowed to be real numbers?
3. Let \mathbb{F} be the set of all ordered pairs (a, b) of real numbers.
(a) If addition and multiplication are defined by

$$
(a, b)+(c, d)=(a+c, b+d)
$$

and

$$
(a, b)(c, d)=(a c, b d)
$$

does \mathbb{F} become a field?
(b) If addition and multiplication are defined by

$$
(a, b)+(c, d)=(a+c, b+d)
$$

and

$$
(a, b)(c, d)=(a c-b d, a d+b c)
$$

is \mathbb{F} a field then? Does this remind you of anything?
4. If p is prime, then \mathbb{F}_{p}^{n} is a vector space over \mathbb{F}_{p}. (Remember, \mathbb{F}_{p} is the set of integers modulo p.) How many vectors are there in this vector space?
5. Which of the following sets are linearly independent in the vector space \mathbb{F}_{2}^{3} ?
(a) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$
6. What are the ranks of the following matrices with coefficients in \mathbb{F}_{2} ?
(a) $\left[\begin{array}{llll}1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$
(b) $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 0 & 1\end{array}\right]$
7. Verify that the collection of rational functions

$$
F(X)=\left\{\left.\frac{f(X)}{g(X)} \right\rvert\, f(X) \text { and } g(X) \text { are polynomials with coefficients in } \mathbb{F}, g(X) \neq 0\right\}
$$

is a field whenever \mathbb{F} is a field.
8. Let V be a complex vector space. Explain how to make V into a real vector space with (almost) no effort. If V has dimension n as a complex vector space, what is the dimension of V as a real vector space?
9. What is the dimension of \mathbb{R} as a \mathbb{Q}-vector space?
10. (Optional) Let \mathbb{F} be a field, and S a subset of \mathbb{F}. Under what conditions is S also a field?

