Math 16H

DUE IN CLASS FRIDAY, 10/22.

(Remember, there's a definition of fields in the footnote on page 347 of Bretscher.)

- 1. Do the following problems from Bretscher: 7.5 (p. 350), #13-17. Optional: 7.5.37, 3.1.53, 3.1.54.
- 2. Does the set of all polynomials with integer coefficients form a field? What if the coefficients are allowed to be real numbers?
- **3.** Let \mathbb{F} be the set of all ordered pairs (a, b) of real numbers.
 - (a) If addition and multiplication are defined by

$$(a,b) + (c,d) = (a+c,b+d)$$

and

$$(a,b)(c,d) = (ac,bd)$$

does $\mathbb F$ become a field?

(b) If addition and multiplication are defined by

$$(a,b) + (c,d) = (a+c,b+d)$$

and

$$(a,b)(c,d) = (ac - bd, ad + bc),$$

is \mathbb{F} a field then? Does this remind you of anything?

- 4. If p is prime, then \mathbb{F}_p^n is a vector space over \mathbb{F}_p . (Remember, \mathbb{F}_p is the set of integers modulo p.) How many vectors are there in this vector space?
- 5. Which of the following sets are linearly independent in the vector space \mathbb{F}_2^3 ?

(a)
$$\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$$
 (b) $\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ (c) $\left\{ \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$

- 6. What are the ranks of the following matrices with coefficients in \mathbb{F}_2 ?
- 7. Verify that the collection of rational functions

$$F(X) = \left\{ \frac{f(X)}{g(X)} \mid f(X) \text{ and } g(X) \text{ are polynomials with coefficients in } \mathbb{F}, g(X) \neq 0 \right\}$$

is a field whenever $\mathbb F$ is a field.

- 8. Let V be a complex vector space. Explain how to make V into a real vector space with (almost) no effort. If V has dimension n as a complex vector space, what is the dimension of V as a real vector space?
- **9.** What is the dimension of \mathbb{R} as a \mathbb{Q} -vector space?
- **10.** (Optional) Let \mathbb{F} be a field, and S a subset of \mathbb{F} . Under what conditions is S also a field?