1. Explain whether the following spaces are vector spaces. (Addition and scalar multiplication for functions are defined by

$$
(f+g)(x)=f(x)+g(x),(c f)(x)=c(f(x)) .)
$$

(a) V is all continuous functions f on $[0,1]$ such that $f(0)=0$.
(b) V is all continuous functions f on $[0,1]$ such that $f(0)=0$ and $f(1)=1$.
(c) V is all continuous functions f on $[0,1]$ such that $f(x)>0$ for all x.
(d) V is all continuous functions f on $[0,1]$ such that $f(0)=2 f(1)$.
2. Show that, in any vector space,
(a) if $\vec{u}+\vec{v}=\vec{u}+\vec{w}$, then $\vec{v}=\vec{w}$.
(b) $2 \vec{v}=\vec{v}+\vec{v}$.
3. We say that the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are linearly independent if the equation

$$
c_{1} \vec{v}_{1}+\ldots c_{m} \vec{v}_{m}=\overrightarrow{0}
$$

has only the solution $c_{1}=\cdots=c_{m}=0$; otherwise, we say that they are linearly dependent.
(a) When exactly are the vectors $\left[\begin{array}{l}a \\ b\end{array}\right]$ and $\left[\begin{array}{c}c \\ d\end{array}\right]$ linearly independent?
(b) Let $\vec{v}_{1}, \ldots, \vec{v}_{m}$ be linearly dependent. Let \vec{u} be any other vector. Show that the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}, \vec{u}$ are also linearly dependent.

