Math 16(1) Practice Midterm (not to be turned in)

1. A. Find the solution set to the following system of equations:

$$
\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=15 \\
4 x_{1}+5 x_{2}+6 x_{3}+7 x_{4}=6 \\
6 x_{1}+7 x_{2}+8 x_{3}+9 x_{4}=0
\end{array}
$$

B. Consider the system of equations:

$$
\begin{array}{r}
x_{1}+2 x_{2}+x_{3}=0 \\
-3 x_{1}-x_{2}+2 x_{3}=0 \\
5 x_{2}+3 x_{3}=0
\end{array}
$$

Asking if this has a unique solution is equivalent to which of the following?

1. The vectors $\left[\begin{array}{r}1 \\ -3 \\ 0\end{array}\right],\left[\begin{array}{r}2 \\ -1 \\ 5\end{array}\right]$, and $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ are linearly independent.
2. IGNORE
3. The equation $\left[\begin{array}{rrr}1 & 2 & 1 \\ -3 & -1 & 2 \\ 0 & 5 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ has a solution for every choice of b_{1}, b_{2}, b_{3}.
4. $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \in \operatorname{Span}\left\{\left[\begin{array}{r}1 \\ -3 \\ 0\end{array}\right],\left[\begin{array}{r}2 \\ -1 \\ 5\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$.
5. The transformation $\mathbf{x} \mapsto\left[\begin{array}{rrr}1 & 2 & 1 \\ -3 & -1 & 2 \\ 0 & 5 & 3\end{array}\right] \mathbf{x}$ is one-to-one.
6. The rows of $\left[\begin{array}{rrr}1 & 2 & 1 \\ -3 & -1 & 2 \\ 0 & 5 & 3\end{array}\right]$ are linearly independent.
7. The range (image) of the transformation that sends \mathbf{x} to $\left[\begin{array}{rrr}1 & 2 & 1 \\ -3 & -1 & 2 \\ 0 & 5 & 3\end{array}\right] \mathbf{x}$ is a subset of \mathbb{R}^{3}.
C. Find the inverse of the coefficient matrix in part B and use it to solve the matrix equation
$\left[\begin{array}{rrr}1 & 2 & 1 \\ -3 & -1 & 2 \\ 0 & 5 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]$
Is the set of vectors $\left[\begin{array}{r}0 \\ 3 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{r}-5 \\ -7 \\ 5 \\ 1\end{array}\right],\left[\begin{array}{r}10 \\ 4 \\ -4 \\ 2\end{array}\right]$ linearly independent?
B. Prove the following theorem from our book: Let $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ be a set of vectors from \mathbb{R}^{n}. If $p>n$, then this set is linearly dependent.
8. A. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation that multiplies a vector by the scalar 2 and then reflects it across the x-axis. IGNORE THE REST OF PART A.
B. Find the standard matrix for T.
C. Is T one-to-one and onto? Justify your answer, of course.
D. IGNORE.
9. A. Let A be an $n \times n$ matrix whose columns are linearly independent. Show that the columns of A^{2} $\operatorname{span} \mathbb{R}^{n}$.
B. How many pivot columns must a 7×5 matrix have if its columns are linearly independent? Why?
C. IGNORE.
10. Are the following true or false?

- If the system $A \mathbf{x}=\mathbf{b}$ has more than one solution, then so does the system $A \mathbf{x}=\mathbf{0}$.
- If A is a 6×5 matrix, then the linear transformation that send \mathbf{x} to $A \mathbf{x}$ cannot map \mathbb{R}^{5} onto \mathbb{R}^{6}.
- If A and B are $m \times n$, then both $A B^{T}$ and $A^{T} B$ are defined.
- If A and B are $n \times n$, then $(A+B)(A-B)=A^{2}-B^{2}$.
- IGNORE.

