FINAL EXAM

MATH 16 MAY 15, 2003 PROFESSOR A. JOHNSON

- - (b) Find the least squares solution for the above equation.
 - (c) Find the least-squares error associated to the solution you found above.
- 2. The following rule gives an inner product on M_2 , the set of all 2×2 matrices: $\left\langle \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \right\rangle$, $\left[b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \right\rangle = 2a_{11}b_{11} + (a_{11} + a_{12})(b_{11} + b_{12}) + (a_{11} + a_{21})(b_{11} + b_{21}) + a_{22}b_{22}$.
 - (a) Show that $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}$, $\left[\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \right]$, $\left[\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right]$ is a linearly independent set from M_2 .
 - (b) Let $W = \operatorname{Span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$. Find an orthogonal basis for W, using the above inner product.
 - (c) Find the projection of $\begin{bmatrix} 1 & 8 \\ 12 & 2 \end{bmatrix}$ onto W.
 - (d) Find a nontrivial matrix in W^{\perp}
- 3. Let $T: \mathcal{P}_2 \to \mathcal{P}_3$ be defined as integration, with constant of integration zero. For example, $T(1+t+t^2) = t + \frac{t^2}{2} + \frac{t^3}{3}$.
 - (a) Show this is a linear transformation.
 - (b) Find the matrix representation of T relative to the standard bases for \mathcal{P}_2 and \mathcal{P}_3 .
 - (c) Give an example of how this matrix relates to the transformation T.
- 4. (a) Let A be a 12×12 matrix. You are interested in showing that $A\vec{x} = \vec{b}$ has a solution for every \vec{b} in \mathcal{R}^{12} . This is equivalent to which of the following? Write the appropriate numbers here:

⁽i) det A = 0.

⁽ii) the transformation $\vec{x} \to A\vec{x}$ is one-to-one.

⁽iii) Nul $A = \{\vec{0}\}.$

⁽iv) A is diagonalizable.

⁽v) rank A = 12.

⁽vi) $A = A^T$.

⁽vii) the columns of A span \mathbb{R}^{12} .

⁽viii) A is invertible.

FINAL EXAM

- (b) Suppose $\{\vec{u}_1,\cdots,\vec{u}_m\}$ is an orthonormal list of vectors in vector space V. Prove that if $\vec{v}\in \mathrm{Span}\ \{u_1,\cdots,u_m\}$ then $||\vec{v}||^2=|<\vec{v},\vec{u}_1>|^2+\cdots+|<\vec{v},\vec{u}_m>|^2$.
- 5. Let $W = \operatorname{Span} \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\3\\1 \end{bmatrix} \right\}$.
 - (a) Show that $A = \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\3\\1 \end{bmatrix} \right\}$ is a basis for W.
 - (b) Show that $\mathcal{B} = \left\{ \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 7 \\ 3 \end{bmatrix} \right\}$ is another basis for W.
 - (c) Find the change of basis matrix from \mathcal{A} to \mathcal{B} , i.e. $P_{\mathcal{B}\leftarrow\mathcal{A}}$.
 - (d) Find the coordinate vector of $\begin{bmatrix} 3 \\ 5 \\ 2 \end{bmatrix}$ in both bases, and use your answer from the last question to relate them.
- 6. (a) Find the eigenvalues of $A = \begin{bmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{bmatrix}$, and find the eigenspace associated to each eigenvalue.
 - (b) Is matrix A diagonalizable?
 - (c) Let B be an arbitrary square matrix. If B is diagonalizable, what does this diagonal matrix represent?
 - (d) Prove that if a matrix B is invertible then 0 is not an eigenvalue of B.
- 7. (a) Find the inverse to $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 0 & 3 & 8 \end{bmatrix}$ and use it to solve $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 0 & 3 & 8 \end{bmatrix} \vec{x} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$.
 - (b) Find the determinent of $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 0 & 3 & 8 \end{bmatrix}$.
 - (c) Prove that the inverse of AB is $B^{-1}A^{-1}$.