Due in my office 24 hours after you download it, and by 5:00 pm on Sunday 3/28 at the latest. You may use only your text, notes, and old homework. You may not talk to anyone about it, or use any other references. I will not answer any questions other than requests for clarification. Make sure that your answers are clear and legible.

Please note: I will have my usual office hours TW 2-3, but I will be away from Thursday through Sunday.

1. Let $\Omega=\{1,2,3,4,5,6\}$. What is the smallest σ-algebra that contains the sets $\{2,3,4\}$ and $\{4,6\}$?
2. Suppose that $X_{n} \xrightarrow{P} X, Y_{n} \xrightarrow{P} X$, and $\mathbb{P}\left(X_{n} \leq Z_{n} \leq Y_{n}\right)=1$ for all n. Prove that $Z_{n} \xrightarrow{P} X$.
3. Let Z_{n} be the number of members of the nth generation of a branching process, where the family sizes of the individuals are independent and distributed identically to the random variable X. Assume that $\mathbb{E}(X)=\mu<1$. Let $H=Z_{0}+Z_{1}+\ldots$ be the total number of individuals who ever live in this process.
(a) Find $\mathbb{E}(H)$ if $Z_{0}=1$.
(b) Find $\mathbb{E}(H)$ if $Z_{0}=k$.
4. Consider a Markov chain on the set $S=\{0,1,2, \ldots\}$ with transition probabilities $p_{i, i+1}=a_{i}$, $p_{i, 0}=1-a_{i}, i \geq 0$, where $\left(a_{i}: i \geq 0\right)$ is a sequence of constants which satisfy $0<a_{i}<1$ for all i. Let $b_{0}=1, b_{i}=a_{0} a_{1} \cdots a_{i-1}$ for $i \geq 1$.
(a) Show that the chain is persistent if and only if $b_{i} \rightarrow 0$ as $i \rightarrow \infty$.
(b) Show that the chain is non-null persistent if and only if $\sum_{i} b_{i}<\infty$, and find the stationary distribution if this condition holds.
5. Polya's urn An urn initially contains one black and one red ball. At each stage, a ball is drawn at random from the urn, its color is noted, and then it is returned to the urn together with a new ball of the same color. Let $X_{n}=0$ if the nth drawing results in a black ball, and $X_{n}=1$ if it results in a red ball. Show that $\left\{X_{1}, X_{2}, \ldots\right\}$ is not a Markov process.
6. A woman continues to have children until she has a boy. Suppose that the probability of having a blond child is p; find the probability that the woman will have k blond children. (Assume that hair color is independent of gender.)
