Due in my office 24 hours after you download it, and by 9:00 am, Sunday, May 16, at the latest. You may use only your text, notes, and old homework. You may not talk to anyone about it, or use any other references. I will not answer any questions other than requests for clarification. Make sure that your answers are clear and legible.

1. Randomized harmonic series We know that the harmonic series $1+\frac{1}{2}+\frac{1}{3}+\ldots$ diverges, and that the alternating harmonic series $1-\frac{1}{2}+\frac{1}{3}-\ldots$ converges. What if we randomize the series, so that each individual term is positive with probability $1 / 2$ and negative with probability $1 / 2$? More formally, let $\left\{X_{n}\right\}$ be a sequence of independent random variables, with $\mathbb{P}\left(X_{n}=1\right)=$ $\mathbb{P}\left(X_{n}=-1\right)=1 / 2$, and consider the series

$$
X_{1}+\frac{X_{2}}{2}+\frac{X_{3}}{3}+\ldots
$$

Show that this series converges almost surely.
2. Independent random variables X, Y, and Z take integer values $1,2, \ldots, n$ with equal probabilities $1 / n$. Find the following:
(a) $\mathbb{P}(X+Y=Z)$
(b) $\mathbb{P}(X+Y+Z=n+1)$
3. Customers arrive in a shop in the manner of a Poisson process with parameter λ. There are infinitely many servers, and each service time is exponentially distributed with parameter μ. Show that the number $Q(t)$ of waiting customers at time t constitutes a birth-death process, and find its stationary distribution.
4. Let W be a standard Wiener process. Show that

$$
\mathbb{P}\left(\sup _{0 \leq s \leq t}|W(s)| \geq w\right) \leq 2 \mathbb{P}(|W(t)| \geq w) \leq \frac{2 t}{w^{2}} \text { for } w>0 .
$$

5. Let $X_{0}, X_{1}, X_{2}, \ldots$ be a Markov chain with the set of states $S=\{1,2,3\}$ and transition matrix

$$
\mathbf{P}=\left(\begin{array}{ccc}
0 & 1-\alpha & \alpha \\
1-\beta & 0 & \beta \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right)
$$

Define Y_{n} by

$$
Y_{n}= \begin{cases}1 & \text { if either } X_{n}=1 \text { or } X_{n}=2 \\ 2 & \text { if } X_{n}=3\end{cases}
$$

Under what conditions is the sequence $Y_{0}, Y_{1}, Y_{2}, \ldots$ a Markov chain?

