Math 118 Practice 2nd Midterm Solutions

1. What are the maximum and minimum values of the function $f(x)=x^{3}-3 x+1$ on the interval $[0,3]$, and where do they occur?

Check endpoints and critical points. $f^{\prime}(x)=3 x^{2}-3$, which exists everywhere, so set $f^{\prime}(x)=0$: $3 x^{2}-3=0$, or $x^{2}=1$, or $x= \pm 1$. Only $x=1$ is in the interval $[0,3]$.

x	$f(x)$
$\mathbf{0}$	$\mathbf{1}$

$1 \quad-1$
$3 \quad 19$
So the maximum is 19 , which occurs at $x=3$, and the minimum is $\mathbf{- 1}$, which occurs at $x=1$.
2. Use linear approximation to estimate $\ln (0.9)$.
$\mathbf{f}(\mathbf{x}) \approx \mathbf{f}(\mathbf{a})+\mathbf{f}^{\prime}(\mathbf{a})(\mathbf{x}-\mathbf{a})$. Here, $a=1$ and $f^{\prime}(x)=1 / x$, so $f(a)=\ln (1)=0$ and $f^{\prime}(a)=1 / 1=1$, and we have $\ln (x) \approx 0+1(x-1)=x-1$. So $\ln (0.9) \approx 0.9-1=-0.1$
3. Find an equation for the line tangent to the graph of $x y+y^{2}=4$ at the point $(3,1)$.

First, find $d y / d x$ by implicit differentiation. Take the derivative $d / d x$ of both sides: $x \cdot d y / d x+y+2 y \cdot d y / d x=0$, and solve for $d y / d x=-y /(x+2 y)$. So at $(\mathbf{3 , 1})$, the slope is $-1 /(3+2)=-1 / 5$, and an equation for the tangent line is $\mathrm{y}-1=-(1 / 5)(\mathrm{x}-3)$, or $\mathrm{y}=$ $-(1 / 5) x+8 / 5$.
4. Given: $r(2)=4, s(2)=1, s(4)=2, r^{\prime}(2)=-1, s^{\prime}(2)=3, s^{\prime}(4)=3$. Compute the following derivatives, or state what additional information you would need to be able to do so.
(a) $H^{\prime}(2)$ if $H(x)=r(x) \cdot s(x)$
(b) $H^{\prime}(2)$ if $H(x)=\sqrt{r(x)}$
(c) $H^{\prime}(2)$ if $H(x)=r(s(x))$
(d) $H^{\prime}(2)$ if $H(x)=s(r(x))$
(a) $r(2) s^{\prime}(2)+r^{\prime}(2) s(2)=(4)(3)+(-1)(1)=11$. (b) $(1 / 2)(1 / \sqrt{r(2)}) r^{\prime}(2)=(1 / 2)(1 / 2)(-1)=$ $-1 / 4$. (c) $r^{\prime}(s(2)) \cdot s^{\prime}(2)=r^{\prime}(1) \cdot 3$ - need to know $r^{\prime}(1)$. (d) $s^{\prime}(r(2)) \cdot r^{\prime}(2)=s^{\prime}(4) \cdot(-1)=$ $(3)(-1)=-3$.
5. Jungle Jane sells robotic monkeys over the internet. To sell q robomonkeys per month, she needs to set the price at $p=125-\frac{q}{25}$ dollars per robomonkey. If she has fixed costs of $\$ 10,000$ per month, and each robomonkey costs her $\$ 25$ to make, how many robomonkeys should she make each month to maximize her profit?

Profit $=$ revenue - cost, or $\pi=R-Q$. The revenue is $R=p q=\left(125-\frac{q}{25}\right) q=125 q-\frac{q^{2}}{25}$, and the cost is $C=10,000+25 q$, so the profit is $\pi=125 q-\frac{q^{2}}{25}-10,000-25 q=$ $100 q-\frac{q^{2}}{25}-10,000$. The endpoints are $q=0$ and $q \rightarrow \infty$. Next, we find the critical points. $\pi^{\prime}=100-\frac{2 q}{25}$, which exists everywhere, so we set it equal to zero: $100-\frac{2 q}{25}=0$, or $100=\frac{2 q}{25}$, or $2500=2 q$, or $1250=q$. This is the only critical point, and $\pi^{\prime \prime}=2 / 25>0$, so the maximum must occur there: she should make 1250 robomonkeys each month.

